Properties of the operator $z^{ - \nu } \log z$, where $z = {d \mathord{\left/ {\vphantom {d {dx}}} \right. \kern-\nulldelimiterspace} {dx}}$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expansion in SL d ( Z / q Z ) , q arbitrary

Let S be a fixed finite symmetric subset of SLd(Z), and assume that it generates a Zariski-dense subgroup G. We show that the Cayley graphs of πq(G) with respect to the generating set πq(S) form a family of expanders, where πq is the projection map Z → Z/qZ.

متن کامل

SIGNAL SHAPE d dx DIFFERENTIATING

1 A lter for edge detection In graylevel images boundaries are often associated to step-like discontinuities. In its simplest form the problem of nding boundaries in 1D images may therefore be thought of as the problem of nding step-discontinuities in a signal. The naive approach to this problem is to use a diierentiator and a threshold in series. The derivative of the signal ought to present l...

متن کامل

2-D Laplace-Z Transformation

Based on recent results for 2-D continuous-discrete systems, this paper develops 2-D Laplace-z transform, which can be used to analyze 2-D continuous-discrete signals and system in Laplace-z hybrid domain. Current 1-D Laplace transformation and z transform can be combined into the new 2-D s-z transform. However, 2-D s-z transformation is not a simple extension of 1D transform, in 2-D case, we n...

متن کامل

Asymptotic behavior of discrete holomorphic maps z and log(z)

It is shown that discrete analogs of z and log(z), defined via particular “integrable” circle patterns, have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painlevé-II equations, asymptotics of these solutions providing the behaviour of discrete z and log(z) at infinity.

متن کامل

Commutativity degree of $mathbb{Z}_p$≀$mathbb{Z}_{p^n}

For a nite group G the commutativity degree denote by d(G) and dend:$$d(G) =frac{|{(x; y)|x, yin G,xy = yx}|}{|G|^2}.$$ In [2] authors found commutativity degree for some groups,in this paper we nd commutativity degree for a class of groups that have high nilpontencies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1931

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1931-05190-9